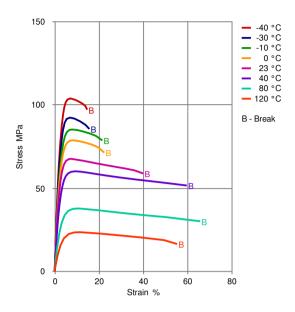
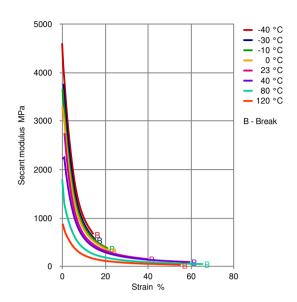


## **Description**

General purpose, good optimization of properties

Celcon® acetal copolymer grade M90 is a medium viscosity polymer providing optimum performance in general purpose injection molding and extrusion of thin walled tubing and thin gauge film. This grade provides overall excellent performance in many applications. Chemical abbreviation according to ISO 1043-1: POM Please also see Hostaform® C 9021.

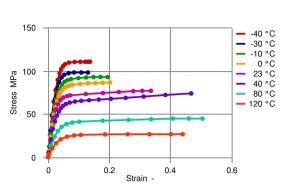

| Physical properties                        | Value   | Unit                   | Test Standard   |
|--------------------------------------------|---------|------------------------|-----------------|
| Density                                    | 1410    | kg/m³                  | ISO 1183        |
| Melt volume rate, MVR                      | 8       | cm <sup>3</sup> /10min | ISO 1133        |
| MVR temperature                            | 190     | °C                     | ISO 1133        |
| MVR load                                   | 2.16    | kg                     | ISO 1133        |
| Molding shrinkage, parallel (flow)         | 2.0     | %                      | ISO 294-4, 2577 |
| Molding shrinkage, transverse normal       | 1.9     | %                      | ISO 294-4, 2577 |
| Water absorption, 23°C-sat                 | 0.75    | %                      | Sim. to ISO 62  |
| Humidity absorption, 23°C/50%RH            | 0.2     | %                      | ISO 62          |
| Mechanical properties                      | Value   | Unit                   | Test Standard   |
| Tensile modulus                            | 2760    | MPa                    | ISO 527-1, -2   |
| Tensile stress at yield, 50mm/min          | 65      | MPa                    | ISO 527-1, -2   |
| Tensile strain at yield, 50mm/min          | 10      | %                      | ISO 527-1, -2   |
| Tensile creep modulus, 1h                  | 2450    | MPa                    | ISO 899-1       |
| Tensile creep modulus, 1000h               | 1350    | MPa                    | ISO 899-1       |
| Flexural modulus, 23°C                     | 2550    | MPa                    | ISO 178         |
| Flexural stress at 3.5% strain             | 73      | MPa                    | ISO 178         |
| Charpy impact strength, 23°C               | 188     | kJ/m²                  | ISO 179/1eU     |
| Charpy impact strength, -30°C              | 181     | kJ/m²                  | ISO 179/1eU     |
| Charpy notched impact strength, 23°C       | 6       | kJ/m²                  | ISO 179/1eA     |
| Charpy notched impact strength, -30°C      | 6       | kJ/m²                  | ISO 179/1eA     |
| zod impact notched, 23°C                   | 5.7     | kJ/m²                  | ISO 180/1A      |
| zod impact notched, -30°C                  | 5.5     | kJ/m²                  | ISO 180/1A      |
| Compressive stress at 1% strain            | 26      | MPa                    | ISO 604         |
| Compressive stress at 6% strain            | 88      | MPa                    | ISO 604         |
|                                            |         |                        |                 |
| Thermal properties                         | Value   | Unit                   | Test Standard   |
| Melting temperature, 10°C/min              | 166     | °C                     | ISO 11357-1/-3  |
| DTUL at 1.8 MPa                            | 101     | °C                     | ISO 75-1, -2    |
| DTUL at 0.45 MPa                           | 158     | °C                     | ISO 75-1, -2    |
| Coeff. of linear therm expansion, parallel | 1.2     | E-4/°C                 | ISO 11359-2     |
| Coeff. of linear therm expansion, normal   | 1.2     | E-4/°C                 | ISO 11359-2     |
| Electrical properties                      | Value   | Unit                   | Test Standard   |
| Volume resistivity, 23°C                   | 8E12    | Ohm*m                  | IEC 62631-3-1   |
| Surface resistivity, 23°C                  | 3E16    | Ohm                    | IEC 62631-3-2   |
| Rheological calculation properties         | Value   | Unit                   | Test Standard   |
| Density of melt                            | 1200    | kg/m³                  | Internal        |
| Thermal conductivity of melt               | 0.155   | W/(m K)                | Internal        |
| Spec. heat capacity melt                   | 2210    | J/(kg K)               | Internal        |
| Eff. thermal diffusivity                   | 4.85E-8 | m²/s                   | Internal        |
| Ejection temperature                       | 140     | °C                     | -               |


Created: 09-Mar-2023 Page: 1/8

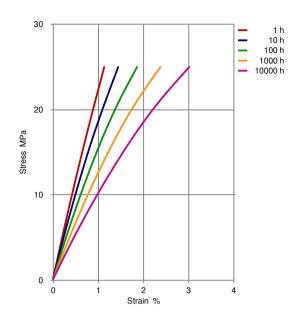
## **Diagrams**

## Stress-strain

## Secant modulus-strain

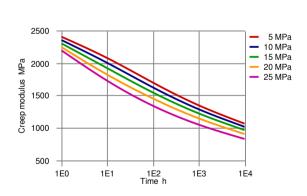


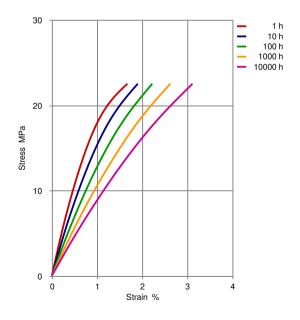




Created: 09-Mar-2023 Page: 2/8

## **True Stress-strain**

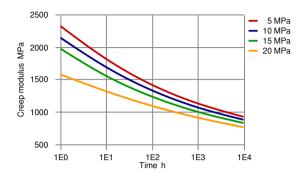
## CAMPUS Stress-strain (isochronous) 23°C





-40 °C yield at 0.06806 strain, 109.249 stress -30 °C yield at 0.06693 strain, 97.045 stress -10 °C yield at 0.03158 strain, 73.058 stress 0°C yield at 0.03985 strain, 74.448 stress 23 °C yield at 0.07175 strain, 71.324 stress 40 °C yield at 0.04124 strain, 56.374 stress 80 °C yield at 0.10200 strain, 40.814 stress 120 °C yield at 0.10200 strain, 40.814 stress Poisson's ratio used is 0.38



## CAMPUS Creep modulus-time 23°C


## CAMPUS Stress-strain (isochronous) 40°C





Created: 09-Mar-2023 Page: 3/8

## CAMPUS Creep modulus-time 40°C



### Typical injection moulding processing conditions

| Pre Drying             | Value       | Unit |  |
|------------------------|-------------|------|--|
| Drying time            | 3 - 4       | h    |  |
| Drying temperature     | 100 - 120   | °C   |  |
| Temperature            | Value       | Unit |  |
| Zone1 temperature      | 170 - 180   | °C   |  |
| Zone2 temperature      | 180 - 190   | °C   |  |
| Zone3 temperature      | 180 - 190   | °C   |  |
| Zone4 temperature      | 190 - 200   | °C   |  |
| Nozzle temperature     | 190 - 200   | °C   |  |
| Melt temperature       | 180 - 190   | °C   |  |
| Mold temperature       | 80 - 120    | °C   |  |
| Hot runner temperature | 180 - 200   | °C   |  |
| Pressure               | Value       | Unit |  |
| Back pressure max.     | 40          | bar  |  |
| Speed                  | Value       |      |  |
| Injection speed        | slow-medium |      |  |
| Other                  | Value       | Unit |  |
| Flow temperature       | 174         | °C   |  |

## Other text information

### Pre-drying

Drying is not normally required. If material has come in contact with moisture through improper storage or handling or through regrind use, drying may be necessary to prevent splay and odor problems.

## Injection molding

Standard reciprocating screw injection molding machines with a high compression screw (minimum 3:1 and preferably 4:1) and low back pressure (0.35 Mpa/50 PSI) are favored. Using a low compression screw (I.E. general purpose 2:1 compression ratio) can result in unmelted particles and poor melt homogeneity. Using a high back pressure to make up for a low compression ratio may lead to excessive shear heating and deterioration of the material.

Created: 09-Mar-2023 Page: 4/8

Melt Temperature: Preferred range 182-199 C (360-390 F). Melt temperature should never exceed 230 C (450 F).

Mold Surface Temperature: Preferred range 82-93 C (180-200 F) especially with wall thickness less than 1.5 mm (0.060 in.). May require mold temperature as high as 120 C (250 F) to reproduce mold surface or to assure minimal molded in stress. Wall thickness greater than 3mm (1/8 in.) may use a cooler (65 C/150 F) mold surface temperature and wall thickness over 6mm (1/4 in.) may use a cold mold surface down to 25 C (80 F). In general, mold surface temperatures lower than 82 C (180 F) may hinder weld line formation and produce a hazy surface or a surface with flow lines, pits and other included defects that can hinder part performance.

#### Injection Molding Preprocessing

Drying is generally not required because Celcon® and Hostaform® acetal copolymers are not hydroscopic nor are they degraded by moisture during processing. Excessive moisture can lead to splay (silver streaking) in molded parts. For better uniformity in molding especially when using regrind or material that has been stored in containers open to the atmosphere, recommended drying conditions are 80 C (180 F) for 3hours. Desiccant hopper dryers are not required. Maximum water content = 0.35%

#### **Injection Molding Postprocessing**

Postprocessing conditioning and moisturizing are not required. It may be necessary to fixture large or complicated parts with varying wall thickness to prevent warpage while cooling to ambient temperature.

#### Film extrusion

Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and melt homogeneity. The design should be approximately 35% each for feed and metering sections with the remaining 30% as the transition zone.

Melt temperature: 160-220 C (320-430 F)

### Film Extrusion Preprocessing

Drying is generally not required because Celcon materials are not hydroscopic nor are they degraded by moisture during processing. Excessive moisture can cause surface defects on the extruded film. For better uniformity especially when using regrind or material that has been stored in containers open to the atmosphere, recommended drying conditions are 3 Hrs. at 80 C (180 F). Desiccant hopper dryers are not required. Max. moisture content = 0.35%.

#### Film Extrustion Postprocessing

Postprocessing conditioning or moisturizing is not required.

### Other extrusion

Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and uniform melt homogeneity. The design should be approximately 35% each for the feed and metering sections with the remaining 30% as transition zone.

Melt temperature 180-220 C (355-430F)

### **Other Extrusion Preprocessing**

Drying is generally not required because Celcon materials are not hydroscopic nor are they degraded by moisture during processing. Excessive moisture can cause surface defects. For better uniformity especially when using regrind or material that has been stored in containers open to the atmosphere, recommended drying is 3 hours at 80 C (180 F). Desiccant hopper dryers are not required. Max. moisture content = 0.35%

#### Other Extrusion Postprocessing

Postprocessing conditioning or moisturizing are not required. For thick walled sections (>3mm or 1/8 in.), annealing is recommended to reduce internal stresses.

Annealing temperature: 130-140 C (265-285 F)

Annealing time: 10 min/mm thickness

### **Profile extrusion**

Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and melt homogeneity. The design should be approximately 35% each for feed and metering sections with the remaining 30% as the transition zone.

Melt temperature: 180-220 C (360-430 F).

Created: 09-Mar-2023 Page: 5/8

## **Profile Extrusion Preprocessing**

Drying is generally not required because Celcon materials are not hydroscopic nor are they degraded by moisture during processing. Excessive moisture can cause surface defects on the extrusion. For better uniformity especially when using regrind or material that has been stored in containers open to the atmosphere, recommended drying conditions are 3 Hrs. at 80 C (180 F). Desiccant hopper dryers are not required. Max. moisture content = 0.035%.

### **Profile Extrusion Postprocessing**

Postprocessing or moisturizing is not required. For thick walled extrusions (>3 mm or 1/8 in.), annealing is recommended to reduce internal stresses.

Annealing temperature: 130-140 C (265-285 F)

Annealing time: 10 min/mm thickness

#### **Sheet extrusion**

Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio (at least 3:1 and preferably 4:1) to assure good melting and uniform melt homogeneity. The screw design should be approximately 35% each for the feed and metering sections with the remaining 30% as the transition zone.

Melt temperature 180-190 C (355-375 F).

### **Sheet Extrusion Preprocessing**

Drying is generally not required because Celcon materials are not hydroscopic nor are they degraded by moisture during processing. Excessive moisture can lead to surface defects. For better uniformity in sheet extrusion especially when using regrind or material that has been stored in containers open to the atmosphere, recommended drying is 3 hours at 80 C (180 F). Desiccant hopper dryers are not required. Max. water content = 0.35%.

#### **Sheet Extrusion Postprocessing**

Postprocessing conditioning or moisturizing is not required. For thick walled sections (>3mm or 1/8 in.), annealing is recommended to reduce internal stresses.

Annealing temperature: 130-140 C (265-285 F)

Annealing time: 10 min/mm wall thickness

#### **Blow molding**

Consult product information services.

## **Blow Molding Preprocessing**

Consult product information services.

## **Blow Molding Postprocessing**

Consult product information services.

### Calandering

Consult product information services.

#### Calendering Preprocessing

Consult product information services.

### Calendering Postprocessing

Consult product information services.

### **Compression molding**

Consult product information services.

## **Compression Molding Preprocessing**

Consult product information services.

Created: 09-Mar-2023 Page: 6/8

## **Compression Molding Postprocessing**

Consult product information services.

## Characteristics

Special Characteristics Auto spec approved

Product Categories Unfilled

Processing Blow molding, Calandering, Film extrusion, Injection molding, Other extrusion, Profile

extrusion, Sheet extrusion

**Delivery Form** Pellets

## **Other Approvals**

| OEM                   | Specification      | Additional Information                 |
|-----------------------|--------------------|----------------------------------------|
| BJEV                  | Q-BJEV 01.59       |                                        |
| Bosch                 | N28 BN22-O034      | Natural & Black                        |
| Continental           | 30.5251-0367.7     |                                        |
| Continental           | TST N 055 54.07    |                                        |
| Stellantis - Chrysler | CPN 1532           | Natural                                |
| Stellantis - Chrysler | CPN 1586           | Black, pre-compounded or Salt & Pepper |
| Stellantis - Chrysler | CPN 3766           | CANOD                                  |
| Evergrande Auto       | EGW.PL.0603-POM-CO |                                        |
| Ford                  | WSK-M4D635-A2      | Natural & Black                        |
| Geely                 | Q/JLY J7110235B    | 2018                                   |
| GM                    | GMP.POM.005        | Natural & Black                        |
| GM                    | GMW22P-POM-C2      |                                        |
| Great Wall Motor      | MP05-01            |                                        |
| Hyundai               | MS237-09, Type A   |                                        |
| Li Auto               | Q/LiA5310020       | 2021 (V2)                              |
| Nissan                | POM-IC2-1          |                                        |
| Renault               | IP13g              | PMR2020                                |
| Renault               | UB15               | PMR2020                                |
| Renault               | UB03f              | PMR2020                                |
| Renault               | EP03a              | PMR2020                                |
| Renault               | EP03-3             | PMR2020                                |
| SAIC Motor            | SMTC 5 310 020     |                                        |
| Tesla                 | TM-1005-40         | Black, Bishop USA                      |
| Tesla                 | TM-1005-50         | Black, Bishop USA                      |
| Toyota                | TSM5515G-1B        |                                        |

### Contact

| Americas                    | Asia                                                                                     | Europe                      |
|-----------------------------|------------------------------------------------------------------------------------------|-----------------------------|
| 8040 Dixie Highway          | 4560 Jinke Road                                                                          | Am Unisys-Park 1            |
| Florence, KY 41042 USA      | Zhang Jiang Hi Tech Park                                                                 | 65843 Sulzbach, Germany     |
| Product Information Service | Shanghai 201210 PRC                                                                      | Product Information Service |
| t: +1-800-833-4882          | Customer Service                                                                         | t: +49-800-86427-531        |
| t: +1-859-372-3244          | t: +86 21 3861 9288                                                                      | t: +49-(0)-69-45009-1011    |
| Customer Service            | e: info-engineeredmaterials-asia@celanese.come: info-engineeredmaterials-eu@celanese.com |                             |
|                             |                                                                                          |                             |

t: +1-800-526-4960 t: +1-859-372-3214

e: in fo-engineered materials-am@celanese.com

Created: 09-Mar-2023 Page: 7/8

### **General Disclaimer**

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values. Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or quarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products. The products mentioned herein are not intended for use in medical or dental implants.

#### **Trademark**

© 2023 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.

Created: 09-Mar-2023 Page: 8/8